본 논문에서 개선된 Dijkstra 알고리즘과 입자 군집 최적화를 이용한 최적 경로 계획 알고리즘을 제안한다. 최적의 경로를 구하기 위해 우선 이동 로봇 공간에서 MAKLINK를 작성하고 MAKLINK와 관련한 그래프를 얻는다. 여기서 MAKLINK는 장애물의 꼭지점을 연결하면서 볼록집합이 만들어지도록 하는 모서리의 집합을 의미한다. 얻은 그래프에서 출발점과 도착점을 포함하여 Dijkstra 알고리즘을 이용하여 최소 비용 최적 경로를 얻고 이 최적의 경로에서 개선된 Dijkstra경로를 얻는다. 마지막으로 개선된 Dijkstra경로에서 입자 군집 최적화를 적용하여 최적의 경로를 얻는다. 제안된 방법이 논문[1]에 나온 결과보다 더 좋은 성능을 갖는다는 것을 실험을 통해 입증한다.
영어초록
In this paper, we develop the optimal path planning algorithm using the improved Dijkstra algorithm and the particle swarm optimization. To get the optimal path, at first we construct the MAKLINK on the world environment and then make a graph associated with the MAKLINK. The MAKLINK is a set of edges which consist of the convex set. Some of the edges come from the edges of the obstacles. From the graph, we obtain the Dijkstra path between the starting point and the destination point. From the optimal path, we search the improved Dijkstra path using the graph. Finally, applying the particle swarm optimization to the improved Dijkstra path, we obtain the optimal path for the mobile robot. It turns out that the proposed method has better performance than the result in [1] through the experiment.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우