화는 상대적으로 부족한 실정이다. 이 연구에서는 카테시안 곱의 역 맥락에서 분수 나눗셈 알고리즘을 구체화하였다. 카테시안 곱의 역 맥락에서 이루어져 있는 기존의 분수 나눗셈 구체 ... 의 역수의 의미, 제수를 1로 만드는 것의 중요성, 기존 학습 내용과의 연결성, 다양한 접근 가능성 면에서 장점이 있다. 이와 같은 장점을 살려 카테시안 곱의 역 맥락에서 분수 ... 학생들이 분수 나눗셈을 이해하기 어려워하는 이유 중 하나는 분수 나눗셈의 구체화가 어렵고 불충분하기 때문이다. 측정 맥락과 분할 맥락의 구체화에 비해 곱과 인수 맥락에서의 구체
을 보완할수 있다. 또한 카테시안 곱의 역 맥락의 문제에서 표준알고리즘을 도출하기에 적절한 모델이라고 할 수 있다. 셋째, 카테시안 곱의 역 맥락에서 직사각형 분할 모델은 측정 맥락 ... 하는지 알아보는 데 있다. 이 연구를통해 얻은 결론은 다음과 같다. 첫째, 제수의 역수를 곱하는 이유나 역수의 의미를 상기시키기 위해서 분수의 나눗셈식을 측정 맥락이나 단위 비율 ... 결정 맥락으로 해석하여계산 과정을 설명할 필요가 있다. 둘째, 직사각형 분할 모델은 분수의 나눗셈식을 측정 맥락으로 해석할 때 기존모델에서 나타나는 우회적이거나 부적절한 부분