• 통큰쿠폰이벤트-통합

인공위성 궤도역학 이물체 문제(Two-body problem)

훈텔라
개인인증판매자스토어
최초 등록일
2024.07.06
최종 저작일
2024.07
14페이지/ 한컴오피스
가격 2,500원 할인쿠폰받기
다운로드
장바구니
  • EasyAI 홍보배너

* 본 문서(hwp)가 작성된 한글 프로그램 버전보다 낮은 한글 프로그램에서 열람할 경우 문서가 올바르게 표시되지 않을 수 있습니다. 이 경우에는 최신패치가 되어 있는 2010 이상 버전이나 한글뷰어에서 확인해 주시기 바랍니다.

소개글

"인공위성 궤도역학 이물체 문제(Two-body problem)"에 대한 내용입니다.

목차

1. Introduction
2. The Two-Body Problem
3. Energy and Angular Momentum
4. The Orbit Equation
5. Conic-Section Geometry
6. Kepler's Equation
7. The Classical Orbital Elements
8. Position and Velocity
9. Orbit Determination and Satellite Tracking

본문내용

2.1 Introduction

Nicholas Copernicus (1473-1543) 지동설
Tycho Brache (1546-1601) 육분의, 천체 관측
Galilei Gaileo (1564-1642) 망원경 사용 천체관측, 지동설, 중력 실험
Johannes Kepler (1571-1630) 3법칙
Isaac Newton (1643-1727) 미적분학, 중력법칙, 운동법칙, Kepler의 법칙을 수식으로 유도

(http://www.gap-system.org/~history/BiogIndex.html)

2.2 The Two-Body Problem

그림 2.4에 있는 것 같은 두 개의 질점으로 이루어진 시스템을 생각하자. 각각의 질점은 서로 상대방의 질점에 인력을 미치고, 이 외에 다른 힘은 존재하지 않는다. 이 경우 이 두 질점의 운동방정식을 쓰면 다음과 같다.
m_1 {rm bold ddot R}_1 = {G m_1 m_2 } over { left| {rm bold R}_2 - {rm bold R}_1 right|}^2 { ( {rm bold R}_2 - {rm bold R}_1 ) } over {left| {rm bold R}_2 - {rm bold R}_1 right|} (2.1)
m_2 {rm bold ddot R}_2 = {G m_1 m_2 } over { left| {rm bold R}_1 - {rm bold R}_2 right|}^2 { ( {rm bold R}_1 - {rm bold R}_2 ) } over {left| {rm bold R}_1 - {rm bold R}_2 right|} (2.2)

<중 략>

2.7 The Classical Orbital Elements

앞에서 본 것처럼 two body problem은 원래 6자유도 시스템에서 무게중심의 등속운동조건이 적용됨으로 3자유도 시스템으로 바꾸어 생각할 수 있고, 시스템의 지배방정식에 초기 위치 및 속도를 적용하면 궤도를 예측할 수 있게 된다.

참고 자료

TLE (Two Line Element)
http://www.celestrak.com/
http://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/JavaSSOP/SSOP_Help/tle_def.html
Definition of Two-line Element Set Coordinate System
Name of Satellite
(NOAA 6) This is simply the name associated with the satellite. Typical names you might be interested in might be "Mir" or "ISS".
International Designator
(84 123A) The 84 indicates launch year was in 1984, while the 123 tallies the 124th launch of the year, and "A" shows it was the first object resulting from this launch.
Epoch Date and Day of Year Fraction
The day of year fraction is just the number of days (in GMT) passed in the particular year. For example, the date above shows "86" as the epoch year (1986) and 50.28438588 as number of days after January 1, 1986. The resulting time of the vector would be 1986/050:06:49:30.94. Note that NASA SkyWatch will expect the time tag to be the same format as shown above when entering a TLE data.
This was computed as follows:
Start with 50.28438588 days (Days = 50)
50.28438588 days - 50 = 0.28438588 days
0.28438588 days x 24 hours/day = 6.8253 hours (Hours = 6)
6.8253 hours - 6 = 0.8253 hours
0.8253 hours x 60 minutes/hour = 49.5157 minutes (Minutes = 49)
49.5157 - 49 = 0.5157 minutes
0.5157 minutes x 60 seconds/minute = 30.94 seconds (Seconds = 30.94)
Ballistic Coefficient
(0.00000140) Also called the first derivative of mean motion, the ballistic coefficient is the daily rate of change in the number of revs the object completes each day, divided by 2. Units are revs/day. This is "catch all" drag term used in the Simplified General Perturbations (SGP4) USSPACECOM predictor.
Second Derivative of Mean Motion
(00000-0 = 0.00000) The second derivative of mean motion is a second order drag term in the SGP4 predictor used to model terminal orbit decay. It measures the second time derivative in daily mean motion, divided by 6. Units are revs/day^3. A leading decimal must be applied to this value. The last two characters define an applicable power of 10. (12345-5 = 0.0000012345).
Drag Term
(67960-4 = 0.000067960) Also called the radiation pressure coefficient (or BSTAR), the parameter is another drag term in the SGP4 predictor. Units are earth radii^-1. The last two characters define an applicable power of 10. Do not confuse this parameter with "B-Term", the USSPACECOM special perturbations factor of drag coefficient, multiplied by reference area, divided by weight.
Element Set Number and Check Sum
(5293) The element set number is a running count of all 2 line element sets generated by USSPACECOM for this object (in this example, 529). Since multiple agencies perform this function, numbers are skipped on occasion to avoid ambiguities. The counter should always increase with time until it exceeds 999, when it reverts to 1. The last number of the line is the check sum of line 1.
Satellite Number
(11416) This is the catalog number USSPACECOM has designated for this object. A "U" indicates an unclassified object.
Inclination (degrees)
The angle between the equator and the orbit plane. The value provided is the TEME mean inclination.
Right Ascension of the Ascending Node (degrees)
The angle between vernal equinox and the point where the orbit crosses the equatorial plane (going north). The value provided is the TEME mean right ascension of the ascending node.
Eccentricity
(0012788) A constant defining the shape of the orbit (0=circular, Less than 1=elliptical). The value provided is the mean eccentricity. A leading decimal must be applied to this value.
Argument of Perigee (degrees)
The angle between the ascending node and the orbit's point of closest approach to the earth (perigee). The value provided is the TEME mean argument of perigee.
Mean Anomaly (degrees)
The angle, measured from perigee, of the satellite location in the orbit referenced to a circular orbit with radius equal to the semi-major axis.
Mean Motion
(14.24899292) The value is the mean number of orbits per day the object completes. There are 8 digits after the decimal, leaving no trailing space(s) when the following element exceeds 9999.
Revolution Number and Check Sum
(346978) The orbit number at Epoch Time. This time is chosen very near the time of true ascending node passage as a matter of routine. The last digit is the check sum for line 2.
http://www.celestrak.com/: 최신 TLE data
SkyWatch (Java 필요)
http://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/JavaSSOP/JavaSSOP.html
(과제) 아리랑위성 1호(KOMPSAT)의 궤도 분석 (Earth Resource로 분류)
(kompsat.kari.re.kr)
keywords: MPC (minor planet center)
훈텔라
판매자 유형Silver개인인증
소개
회원 소개글이 없습니다.
전문분야
논문, 자기소개서, 공학/기술
판매자 정보
학교정보
비공개
직장정보
비공개
자격증
  • 비공개

주의사항

저작권 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
환불정책

해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.

파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
최근 본 자료더보기
탑툰 이벤트
인공위성 궤도역학 이물체 문제(Two-body problem)
  • 유니스터디 이벤트
AI 챗봇
2024년 11월 24일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:57 오후
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감