· Liu, X., et al., “Understanding of regional air pollution over China using CMAQ, Part -I. performance evaluation and seasonal variation“, Atmos. Environ., 44(20), 2010, pp.2415~2426.
· Bignala, K.L., et al., “Ecological impacts of air pollution from road transport on local vegetation”, Appl. Geochem., 22(6), 2007, pp.1265~1271.
· Hayes, F., et al., “Does a simulated upland community respond to increasing background, peak or accumulated exposure of ozone?”, Atmos. Environ., 44(34), 2010, pp.4155~4164.
· Sillman, S., et al., “Ozone-NOx-VOC sensitivity and NOx-VOC indicators in Paris: results from models and Atmospheric Pollution over the Paris Area (ESQUIF) measurements”, J. Geophys. Res., 108, 2003, pp.2156~2202.
· Kitwiroon, N., et al., “Improvements in air quality modelling by using surface boundary layer parameters derived from satellite land cover data”, Water, Air Soil Pollut. Focus, 2(5~6), 2002, pp.29~41.
· Taha, H., Sailor, D., “Evaluating the effects of radiative forcing feedback in modelling urban ozone air quality in Portland, Oregon: two-way coupled MM5-CMAQ numerical model simulations”, Boundary-Layer Meteorol., 137(2), 2010, pp.291~305.
· Cohan, D.S., Hu, Y., Russel, A.G., “Dependence of ozone sensitivity analysis on grid resolution”, Atmos. Environ., 40, 2006, pp.126~135.
· Khiem, M., et al., “Process analysis of Ozone formation under different weather conditions over the Kanto region of Japan using the MM5-CMAQ modelling system”, Atmos. Environ., 44(35), 2010, pp.4463~4473.
· Wang, N., et al., “Simulation of ozone formation at different elevations in mountainous area of Hong Kong using WRF-CMAQ model”, Sci. Total Environ., 505C, 2015, pp.939~951.
· Cope, M.E., et al., “The Australian air quality forecasting system: exploring first steps towards determining the limits of predictability for short-term ozone forecasting”, Boundary-Layer Meteorol., 116(2), 2005, pp.363~384.
· Hogrefe, C., et al., “Daily simulation of ozone and fine particulates over New York State: findings and challenges”, J. Appl. Meteorology Climatol., 46(7), 2007, pp.961~979.
· Li, J., et al., “Modeling study of surface ozone source-receptor relationships in East Asia”, Atmos. Res., 167, 2016, pp.77~88.
· Tong, D.Q., et al., “Using air quality modeling to study source-receptor relationships between nitrogen oxides emissions and ozone exposures over the United States”, Environ. Int., 35(8), 2009, pp.1109~1117.
· Vijayaraghavan, K., et al., “Effects of light duty gasoline vehicle emission standards in the United States on ozone and particulate matter”, Atmos. Environ., 60, 2012, pp.109~120.
· Thompson, T.M., et al., “Air quality resolution for health impact assessment: influence of regional characteristics”,. Atmos. Chem. Phys., 14, 2014, pp.969~978.
· Kumar, R., et al., “Simulations over south Asia using the weather research and forecasting model with chemistry(WRFChem):chemistry evaluation and initial results”, Geosci. Model Dev., 5, 2012, pp.619~648.
· Roy, S.D., Beig, G., Ghude, S.D., “Exposure-plant response of ambient ozone over the tropical Indian Region”, Atmos. Chem. Phys., 9, 2009, pp.5253~5260.
· Itahashi, S., Uno, I., Kim, S., “Seasonal source contributions of tropospheric ozone over East Asia based on CMAQ-HDDM”, Atmos. Environ., 70, 2013, pp.204~217.
· Sharma, S., et al., “Sensitivity analysis of ground level ozone in India using WRF-CMAQ models”, Atmos. Environ., 131, 2016, pp.29~40
· Chatani, S., et al., “Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030”, Atmos. Chem. Phys., 14, 2014, pp.9259~9277.
· Lee, J.-B., et al., “Projections of summertime ozone concentration over East Asia under the multiple IPCC SRES emissions scenarios”, Atmos. Environ., 106, 2015, pp.335~346.
· Sahu, L.K., et al., “Seasonal and interannual variability of tropospheric ozone over an urban site in India: a study based on MOZAIC and CCM vertical profiles over Hyderabad”, J.Geophys.Res. Atmos., 119, 2014, pp.3615~3641.
· Grenfell, J.L., Shindell, D.T., Grewe, V., “Sensitivity studies of oxidative changes in the troposphere in 2100 using the GISS GCM”, Atmos. Chem. Phys., 3, 2003, pp.1267~1283.
· Bond, T.C., et al., “Bounding the role of black carbon in the climate system: a scientific assessment”, J. Geophys. Res. Atmos., 118, 2013, pp.5380~5552.
· Kim, Y., et al., “Improving ozone modeling in complex terrain at a fine grid resolution e-Part II: influence of schemes in MM5 on daily maximum 8-h ozone concentrations and RRFs (Relative Reduction Factors) for SIPs in the non-attainment areas”, Atmos. Environ., 44(17), 2010, pp.2116~2124.
· Sule, N.V., et al., “A decision making framework for assessing control strategies for ground level ozone”, Atmos. Environ., 45(28), 2011, pp.4996~5004.
· Zhang, H., Ying, Q., “Contributions of local and regional sources of NOx to ozone concentrations in Southeast Texas”, Atmos. Environ., 45, 2011, pp.2877~2887.