[수학의이해C]인도수학이 수학에 끼친 영향, 중세 이슬람수학의 수학사적 역할, n은 소수 증명, 작도불가능 이유.
- 최초 등록일
- 2011.09.21
- 최종 저작일
- 2011.09
- 7페이지/ 한컴오피스
- 가격 3,000원
소개글
1. 고대 인도수학이 수학에 끼친 영향 중 가장 중요한 것은?
2. 중세 이슬람수학은 수학사에서 어떤 역할을 하고 있는지 서술하시오.
3. 1보다 큰 자연수 n에 대한 명제“(루트n)보다 작거나 같은 모든 소수가 n을 나누지 않으면, n은 소수이다.”를 증명하라.
4. 주어진 원과 면적이 같은 정사각형을 작도하는 것이 불가능한 이유를 설명해 보라.
상기 과제를 충실히 소화하고 증명했습니다.
목차
Ⅰ. 서 론
Ⅱ. 고대 인도수학이 수학에 끼친 영향 중 가장 중요한 것은?
Ⅲ. 중세 이슬람수학은 수학사에서 어떤 역할을 하고 있는지 서술
Ⅳ. 1보다 큰 자연수 n에 대한 명제“(루트n)보다 작거나 같은 모든 소수가 n을 나누지 않으면, n은 소수이다.”를 증명
Ⅴ. 주어진 원과 면적이 같은 정사각형을 작도하는 것이 불가능한 이유를 설명
Ⅵ. 결 론
[참고 자료]
본문내용
Ⅰ. 서 론
맨 처음으로 마이너스의 수를 발견한 민족은 음양론(陰陽論)을 주장한 중국이며, 0의 발견은 공(空) 사상을 형성한 인도였었고, 크기가 없는 존재론적인 점(点)을 생각한 것은 존재의 철학을 가졌던 희랍인, 무한을 수학의 대상에 도입한 것은 무한(超越者)의 종교를 갖는 기독교권이었다.
그리고 연금술이 과학을, 점성술이 천문학을, 또 신비론 인 수 관념이 수학의 여왕이라고 하는 數論의 모태가 된 것은 주목 할 만 한 일이다.
이들 일련의 수학과의 사상적인 일치는 결코 우연이 아니었다.
수학의 개념과 수학적 정리에 대해서는 신비스러운 해석이 많이 있다.
플라톤에 의해서 ‘유클리드 기하학’의 정의는 이데아(idea)의 세계에서의 영원한 진리를 나타낸다고 믿어졌고 어거스틴은 이러한 플라톤의 이데아를 신의 이데아로, 데카르트에 의해서는 개인적 이성을 초월한 영원불변의 진리로 믿어졌다.
수에 대해서도 고대에서부터 현대에 이르기까지 신비주의자들 뿐 아니라 과학자, 철학자들의 신비한 해석의 대상이 되었다.
희랍인들은 수에서 얻은 느낌을 통하여 자신들의 사상을 중심으로 때로는 종교단체를 만들었는데 그들의 수만큼은 오랫동안 서구인의 사상을 지배하여 왔다.
희랍인의 생각 속에는 수학의 1은 하늘(天)로 나타나 있다.
어거스틴은 6의 완전성을 다음과 같이 말했다. “6은 그 자체가 완벽하다. 그렇기 때문에 신이 6일에 만물을 창조했다.”
6=1+2+3 즉, 6은 그 자신을 제외한 그 약수의 전체 합과 같다.
참고 자료
편집부, 수학의이해, 한국방송통신대학교, 2011
배종수, 신항균, 현대수학의 이해, 경문사, 2010
데이비드 벌린스키, 김하락 역, 수학의 역사, 을유문화사, 2007
나까다 노리오, 오희옥 역, 수학 역사기행, 경문사, 2003
찰스 밴 도렌, 박중서 역, 지식의 역사, 갈라파고스, 2010