Conventional prosthetic hands require users to activate designated muscles or press buttons to select among predefined grasping patterns. These methods are time-consuming and increase muscle fatigue. This study proposes a regression model that differentiates multiple muscle activation patterns allowing the user to select a desired grasping pattern. We classified four hand primitives and three force intensities, which can reflect the intention of prosthetic hand users. An 8-channel band-type sEMG sensor was used to measure myoelectric signals from an amputated upper-arm. To acquire the sEMG data, the amputee was instructed to imagine four hand primitives (fist, open hand, flexion, and extension) with three levels of force intensity (low, medium, and high). Time-domain features (mean average value, variance, waveform length, and root mean square) were extracted from the sEMG signal and classified using a Support Vector Machine. The hand primitives and force intensities had accuracies of 95% and 90%, respectively. Results indicate the regression model reflected the user’s intention to select different grasping patterns, and is thus expected to improve the quality of life of amputees.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우