This study is aimed to analyze the hydrodynamic characteristics of the cage net in the circulating water channel. It visualized wake flows using a PIV (paricle imaging velocimetry) and analyzed the flow velocity distribution. In addition, the vorticity and turbulence intensity were analyzed from the wake flow distribution and compared changes by flow velocity. Results showed that the average turbulence intensity in the circulating water channel was very stable showing less than 1% in the range between 0.2 and 0.8 m/s. The drag coefficient affecting to the netting was estimated to be 1.35. The flow decreasing rate of the wake in the middle of the netting was 2.1% at the range of 0.2 m/s and it was constant at 6.6―6.9% over the range of 0.4 m/s irrespective of velocity increases. Finally, the change of turbulence intensity by netting and knot mesh could be confirmed. These results can be utilized as a basic information for the future research of flow characteristics by fishing nets and meshes.
영어초록
This study is aimed to analyze the hydrodynamic characteristics of the cage net in the circulating water channel. It visualized wake flows using a PIV (paricle imaging velocimetry) and analyzed the flow velocity distribution. In addition, the vorticity and turbulence intensity were analyzed from the wake flow distribution and compared changes by flow velocity. Results showed that the average turbulence intensity in the circulating water channel was very stable showing less than 1% in the range between 0.2 and 0.8 m/s. The drag coefficient affecting to the netting was estimated to be 1.35. The flow decreasing rate of the wake in the middle of the netting was 2.1% at the range of 0.2 m/s and it was constant at 6.6―6.9% over the range of 0.4 m/s irrespective of velocity increases. Finally, the change of turbulence intensity by netting and knot mesh could be confirmed. These results can be utilized as a basic information for the future research of flow characteristics by fishing nets and meshes.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우