Rainfall data is the most basic input data to analyze the hydrological phenomena and can be missing due to various reasons. In this research, a neural network based model to estimate missing rainfall data as approximate values was developed for 12 rainfall stations in the Soyang river basin to improve existing methods. This approach using neural network has shown to be useful in many applications to deal with complicated natural phenomena and displayed better results compared to the popular offline estimating methods, such as RDS(Reciprocal Distance Squared) method and AMM (Arithmetic Mean Method). Additionally, we proposed automated data reconciliation systems composed of a neural network learning processer to be capable of real-time reconciliation to transmit reliable hydrological data online.
영어초록
Rainfall data is the most basic input data to analyze the hydrological phenomena and can be missing due to various reasons. In this research, a neural network based model to estimate missing rainfall data as approximate values was developed for 12 rainfall stations in the Soyang river basin to improve existing methods. This approach using neural network has shown to be useful in many applications to deal with complicated natural phenomena and displayed better results compared to the popular offline estimating methods, such as RDS(Reciprocal Distance Squared) method and AMM (Arithmetic Mean Method). Additionally, we proposed automated data reconciliation systems composed of a neural network learning processer to be capable of real-time reconciliation to transmit reliable hydrological data online.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우