항목 무응답(item missing)이 발생한 설문조사에서 결측이 포함된 변수에 이상치(outlier)의 존재와 다른 설문문항 항목과의 논리적 한계(boundary) 조건들이 유의미하다면 결측치 대체문제는 매우 복잡해진다. 한계가 있는 결측값들을 포함한 변수에 이상치가 존재하는 경우, 기존의 회귀분석에 근거한 결측치 대체방법은 편향된 대체값 그리고 한계를 만족하지 않은 대체값을 제시할 가능성이 있다. 이에 본 논문은 회귀모형에 기반을 두고 결측치들을 대체를 함에 있어 이상치와 논리적 한계조건이 자료에 존재하는 경우, 다양한 로버스트 회귀모형과 다중대체 방법의 조합을 통해 해결점을 모색하고자 한다. 이를 위해 이들 방법들의 최적의 조합을 다양한 시나리오별로 모의실험을 통하여 찾아보고 이에 대하여 논의하였다.
영어초록
The problem of missing value imputation for variables in surveys that include item missing becomes complicated if outliers and logical boundary conditions between other survey items cannot be ignored. If there are outliers and boundaries in a variable including missing values, imputed values based on previous regression-based imputation methods are likely to be biased and not meet boundary conditions. In this paper, we approach these difficulties in imputation by combining various robust regression models and multiple imputation methods. Through a simulation study on various scenarios of outliers and boundaries, we find and discuss the optimal combination of robust regression and multiple imputation method.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우