준 지도학습과 여러 개의 딥 뉴럴 네트워크를 사용한 멀티 모달 기반 감정 인식 알고리즘 (Multi-modal Emotion Recognition using Semi-supervised Learning and Multiple Neural Networks in the Wild)
한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
인간 감정 인식은 컴퓨터 비전 및 인공 지능 영역에서 지속적인 관심을 받는 연구 주제이다. 본 논문에서는 wild 환경에서 이미지, 얼굴 특징점 및 음성신호로 구성된 multi-modal 신호를 기반으로 여러 신경망을 통해 인간의 감정을 분류하는 방법을 제안한다. 제안 방법은 다음과 같은 특징을 갖는다. 첫째, multi task learning과 비디오의 시공간 특성을 이용한 준 감독 학습을 사용함으로써 영상 기반 네트워크의 학습 성능을 크게 향상시켰다. 둘째, 얼굴의 1 차원 랜드 마크 정보를 2 차원 영상으로 변환하는 모델을 새로 제안하였고, 이를 바탕으로 한 CNN-LSTM 네트워크를 제안하여 감정 인식을 향상시켰다. 셋째, 특정 감정에 오디오 신호가 매우 효과적이라는 관측을 기반으로 특정 감정에 robust한 오디오 심층 학습 메커니즘을 제안한다. 마지막으로 소위 적응적 감정 융합 (emotion adaptive fusion)을 적용하여 여러 네트워크의 시너지 효과를 극대화한다. 제안 네트워크는 기존의 지도 학습과 반 지도학습 네트워크를 적절히 융합하여 감정 분류 성능을 향상시켰다. EmotiW2017 대회에서 주어진 테스트 셋에 대한 5번째 시도에서, 제안 방법은 57.12 %의 분류 정확도를 달성하였다.
영어초록
Human emotion recognition is a research topic that is receiving continuous attention in computer vision and artificial intelligence domains. This paper proposes a method for classifying human emotions through multiple neural networks based on multi-modal signals which consist of image, landmark, and audio in a wild environment. The proposed method has the following features. First, the learning performance of the image-based network is greatly improved by employing both multi-task learning and semi-supervised learning using the spatio-temporal characteristic of videos. Second, a model for converting 1-dimensional (1D) landmark information of face into two-dimensional (2D) images, is newly proposed, and a CNN-LSTM network based on the model is proposed for better emotion recognition. Third, based on an observation that audio signals are often very effective for specific emotions, we propose an audio deep learning mechanism robust to the specific emotions. Finally, so-called emotion adaptive fusion is applied to enable synergy of multiple networks. The proposed network improves emotion classification performance by appropriately integrating existing supervised learning and semi-supervised learning networks. In the fifth attempt on the given test set in the EmotiW2017 challenge, the proposed method achieved a classification accuracy of 57.12%.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우