국내 교통 현실을 반영한 중(重)차량에 대한 하중 분석은 케이블 교량의 유지관리시 잔존수명 예측을 위한 피로하중모델 개발이나 교량의 설계시 해석에 필요한 활하중 모델 개발시 반드시 필요하다. 이에 본 연구에서는 강합성 사장교 상부구조 하면에 설치된 변형률 센서에서 측정한 신호를 이용하여 교량을 주행하고 있는 중차량의 하중정보를 얻기 위하여, 인공신경망 및 영향선을 이용한 차량하중분석시스템을 개발하였다. 인공신경망의 학습과 테스트를 위한 데이터 확보에 있어서 이론적인 수치 시뮬레이션을 통하지 않고, 실제 교량을 주행하는 임의 차량에 대해 직접 측정한 데이터를 이용하였다. 또한, 학습된 신경망의 정확도를 검증하기 위하여 3종류의 시험재하차량을 반복 주행시켜 구한 값과 계량소에서 측정한 정적 값을 비교하였다. 교량의 국부거동을 고려하기 위하여 가로보를 이용하였고, 인공신경망을 이용한 방법과 영향선을 이용한 방법의 분석결과를 비교한 결과, 인공신경망이론을 적용한 분석방법이 하중 판별의 정확도에 있어서는 영향선 분석방법보다 높은 정확도를 얻을 수 있었다.
영어초록
The analysis of vehicular loads reflecting the domestic traffic circumstances is necessary for the development of adequate design live load models in the analysis and design of cable-supported bridges or the development of fatigue load models to predict the remaining lifespan of the bridges. This study intends to develop an ANN(artificial neural network)-based Bridge WIM system and Influence line-based Bridge WIM system for obtaining information concerning the loads conditions of vehicles crossing bridge structures by exploiting the signals measured by strain gauges installed at the bottom surface of the bridge superstructure. This study relies on experimental data corresponding to the travelling of hundreds of random vehicles rather than on theoretical data generated through numerical simulations to secure data sets for the training and test of the ANN. In addition, data acquired from 3 types of vehicles weighed statically at measurement station and then crossing the bridge repeatedly are also exploited to examine the accuracy of the trained ANN. The results obtained through the proposed ANN-based analysis method, the influence line analysis method considering the local behavior of the bridge are compared for an example cable-stayed bridge. In view of the results related to the cable-stayed bridge, the cross beam ANN analysis method appears to provide more remarkable load analysis results than the cross beam influence line method.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우