본 논문에서, Gaussian noise를 제거할 때 발생하는 over blurring 현상을 감소시키는 network를 구현하였다. 기존 filtering방식은 원 영상을 blurring하여 noise를 제거함으로써, edge나 corner 같은 high frequency 성분도 함께 지워지는 것을 확인할 수 있다. CNN (Convolutional Neural Network)기반 denoiser의 경우도 사소한 edge, keypoint를 noise로 인식하여 이러한정보를 잃게 된다. 우리는 CNN을 기반으로 denoising된 high frequency 성분만을 획득하여 기존 denoiser에 추가함으로써denoising 성능을 유지하면서 over blurring을 완화하는 network 제안한다.
영어초록
In this paper, we have implemented a network that overcomes the over-blurring phenomenon that occurs whenremoving Gaussian noise. In the conventional filtering method, blurring of the original image is performed to removenoise, thereby eliminating high frequency components such as edges and corners. We propose a network that reducingover blurring while maintaining denoising performance by adding denoised high frequency components to denoisers basedon CNN.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우