본 연구는 확률적 시스템에서 관심 성과함수의 기대치의 최적을 유도하는 서비스 자원의 최적 배분 문제를 조사하였다. 이러한 목적으로 통제변수를 활용하여 성과함수 기대치에 대한 서비스 자원 파라미터의 gradient를 구하는 방법을 제안하고 이를 최적화 기법의 탐색과정에 적용하여 가용 자원의 최적 배분 문제를 분석하였다. 제안된 gradient 추정 방법은 시뮬레이션 실험에서 입력 파라미터의 차원이 증가하더라도 추가로 표본점의 수를 증가시킬 필요가 없이 단일점에서 시뮬레이션 반응 결과만을 활용하고 또한 시뮬레이션의 발전과정에서 성과함수와 입력 파라미터 사이의 논리적인 관계를 기술할 필요가 없어 적용하기에 편리하다고 볼 수 있다. 본 연구의 결과를 다 차원 파라미터 공간으로의 확장하는 문제와 다양한 형태의 시뮬레이션 모형으로 적용 문제는 향후 연구해야 할 과제로 생각된다.
영어초록
In this paper, we investigate an optimal allocation of constant service resources in stochastic system to optimize the expected performance of interest. For this purpose, we use the control variates to estimate the gradients of expected performance with respect to given resource parameters, and apply these estimated gradients in stochastic optimization algorithm to find the optimal allocation of resources. The proposed gradient estimation method is advantageous in
that it uses simulation results of a single design point without increasing the number of design points in simulation experiments and does not need to describe the logical relationship among realized performance of interest and perturbations in input parameters. We consider the applications of this research to various models and extension of input parameter space as the future research.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우