The aim of this work is to identify application of ultra low NOx and CO combustor. To achieve this, we developed the premixed oxidizer-staging combustor using a cyclone flow. Various factors such as equivalence ratio for the combustion condition and swirl type for secondary air injection have been tested experimentally for flame stability and NOx, CO emission characteristics. Before to do this, we had been tested cyclone premixed combustor in advance. it is similar to first combustor of premixed oxidizer-staging combustor. As a result, cyclone premixed flame shows the very high flame stability and low NOx emission. however, it can be identified that there were some problems such as a little high CO emission and thermal resistance of combustor wall. Cyclone premixed oxidizer-staging combustor can resolve those of problems. In our combustor, we can found out optimal condition that the secondary air injection method is swirl type, swirl direction is co-swirl and equivalence ratio of first combustor is 1.3. Quantitatively, we can achieve 10.8 ppm for NOx and 30.2 ppm for CO emissions respectively. Form this result, we can identified that cyclone premixed oxidizer-staging combustor can apply to ultra low NOx and CO combustor.
영어초록
The aim of this work is to identify application of ultra low NOx and CO combustor. To achieve this, we developed the premixed oxidizer-staging combustor using a cyclone flow. Various factors such as equivalence ratio for the combustion condition and swirl type for secondary air injection have been tested experimentally for flame stability and NOx, CO emission characteristics. Before to do this, we had been tested cyclone premixed combustor in advance. it is similar to first combustor of premixed oxidizer-staging combustor. As a result, cyclone premixed flame shows the very high flame stability and low NOx emission. however, it can be identified that there were some problems such as a little high CO emission and thermal resistance of combustor wall. Cyclone premixed oxidizer-staging combustor can resolve those of problems. In our combustor, we can found out optimal condition that the secondary air injection method is swirl type, swirl direction is co-swirl and equivalence ratio of first combustor is 1.3. Quantitatively, we can achieve 10.8 ppm for NOx and 30.2 ppm for CO emissions respectively. Form this result, we can identified that cyclone premixed oxidizer-staging combustor can apply to ultra low NOx and CO combustor.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우