얼굴 인식 방법 중 인기 있는 고유얼굴 기반 얼굴 인식 방법은 훈련 얼굴 이미지 세트에 대해 PCA를 적용하여 얻어진 고유얼굴을 이용한다. 따라서 훈련 얼굴 이미지들의 조명들과 다른 조명의 환경들에서는 신뢰성 있는 성능을 얻기 어렵다. 본 논문에서는 조명의 영향을 배제한 조명분리 고유얼굴 기반 얼굴 인식 방법을 제안한다. 제안된 방법은 얼굴 모델 이미지 세트의 고유얼굴 공간을 구성된 얼굴 조명 부분공간에 대해 직교 분해하여 얻은 조명분리 고유얼굴들을 이용한다. 실험을 통해서 조명분리 고유얼굴에 기반하는 제안된 얼굴 인식 방법이 기존 고유얼굴 기반 얼굴 인식 방법보다 조명의 영향에 보다 강인함을 확인하였다.
영어초록
The popular eigenfaces-based face recognition among proposed face recognition methods utilizes the eigenfaces obtained from applying PCA to a training face image set. Thus, it may not achieve a reliable performance under illumination environments different from that of training face images. In this paper, we propose an illumination-separate eigenfaces-based face recognition method, which excludes the effects of illumination as much as possible. The proposed method utilizes the illumination-separate eigenfaces which is obtained by orthogonal decomposition of the eigenface space of face model image set with respect to the constructed face illumination subspace. Through experiments, it is shown that the proposed face recognition method based on the illumination-separate eigenfaces performs more robustly under various illumination environments than the conventional eigenfaces-based face recognition method.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우