PARTNER
검증된 파트너 제휴사 자료

고속 이동 통신 시스템을 위한 페이딩 예측기반 송신 전력 제어 (A Transmit Power Control based on Fading Channel Prediction for High-speed Mobile Communication Systems)

7 페이지
기타파일
최초등록일 2025.03.02 최종저작일 2009.01
7P 미리보기
고속 이동 통신 시스템을 위한 페이딩 예측기반 송신 전력 제어
  • 서지정보

    · 발행기관 : 한국통신학회
    · 수록지 정보 : 한국통신학회논문지 / 34권 / 1호 / 27 ~ 33페이지
    · 저자명 : 황인관, 이상국, 류인범

    초록

    본 논문에서는 고속 이동성을 갖는 통신 시스템에서 회귀 신경망을 기반으로 한 페이딩 신호 예측 기법을 제안하고, 이를 이용한 송신 전력 제어를 제안하였다. 회귀 신경망의 연산 결과를 해석적으로 도출하여, 신경망 특유의 회로 복잡도 문제를 해결하고, 연산된 채널 예측치를 이용하여 최대비 결합(maximum ratio combining)방식으로 여러 개의 송신 안테나에 대하여 채널 이득을 산출하고, 이 산출된 값으로 송신 안테나 각각에 대한 송신 전력을 제어하였다. 모의 실험 결과 채널 예측 기반 전력 제어를 하지 않은 것에 비해 뛰어난 성능을 나타냄을 보여준다. 기존의 대부분의 연구들이 페이딩 신호에 강인한 수신기술에 대하여 연구를 하였거나 페이딩 신호에 대한 채널 예측도 저속의 이동성에 국한되어진 것에 비하여, 제안된 채널예측 방법은 개회로 전력제어에 적용하는 경우 송신단에서 페이딩의 영향을 제거하여 신호를 송신하기 때문에 수신단에서 여타의 요소기술들을 매우 단순하게 설계하거나 시스템의 복잡도를 획기적으로 개선시킬 수 있는 가능성을 제시하였다.

    영어초록

    This paper proposes transmit power control techniques with fading channel prediction scheme based on recurrent neural network for high-speed mobile communication systems. The operation result of recurrent neural network which is derived interpretively solves complexity problems of neural network circuit, and channel gain of multiple transmit antenna is derived with maximum ratio combining(MRC) by using the operation result, and this channel gain control transmit power of each antenna. simulation results show that proposed method has a outstanding performance compared to method that is not to be controlled power based on channel prediction. Most of legacy studies are for robust receive technique of fading signals or channel prediction of fading signals limited low-speed mobility, but in open loop power control, proposed channel prediction method decrease system complexity with removal of fading effect in transmitter.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 04월 19일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:31 오후