생물학적으로 동기가 되는 신경망 모델에 기반한 TAM 네트워크는 특별히 패턴분석에 효과적인 모델이다. TAM 네트워크는 입력층, 카테고리층, 출력층으로 구성되어 있다. 입력 및 출력 데이터에 대한 퍼지룰은 TAM 네트워크에서 얻어진다. 각 층에서 링크와 노드를 감소하기 위한 3가지의 프루닝룰을 사용하는 TAM 네트워크를 퍼지 TAM 네트워크라고 한다. 본 논문에서는 퍼지 TAM 네트워크를 건설협력업체의 핵심역량모델의 패턴분석에 적용하고 그 유용성을 보인다.
영어초록
The TAM(Topographic Attentive Mapping) network based on a biologically-motivated neural network model is an especially effective one for pattern analysis. It is composed of of input layer, category layer, and output layer. Fuzzy rule, for input and output data are acquired from it. The TAM network with three pruning rules for reducing links and nodes at the layer is called fuzzy TAM network. In this paper, we apply fuzzy TAM network to pattern analysis of core competency model for subcontractors of construction companies and show its usefulness.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우