휴먼인터페이스 기술의 발달에서 인간과 기계의 상호작용은 중요한 부분이다. 감정인식에 대한 연구는 이러한 상호작용에 도움을 준다. 본 연구는 개인화된 음성신호에 대하여 감정인식 알고리즘을 제안하였다. 감정인식을 위하여 PLP 분석을 이용하여 음성신호의 특징으로 사용하였다. 처음에 PLP 분석은 음성인식에서 음성신호의 화자 종속적인 성분을 제거하기 위하여 사용되었으나 이후 화자인식을 위한 연구에서 PLP 분석이 화자의 특징 추출을 위해 효과적임을 설명하고 있다. 그래서 본 논문은 PLP 분석으로 만들어진 개인화된 감정 패턴을 이용하여 쉽게 실시간으로 음성신호로부터 감정을 평가하는 알고리즘을 제안하였다. 그 결과 최대 90%이상의 인식률과 평균 75%의 인식률을 보였다. 이 시스템은 간단하지만 효율적이다.
영어초록
In the field of development of human interface technology, the interactions between human and machine are important. The research on emotion recognition helps these interactions. This paper presents an algorithm for emotion recognition based on personalized speech signals. The proposed approach is trying to extract the characteristic of speech signal for emotion recognition using PLP (perceptual linear prediction) analysis. The PLP analysis technique was originally designed to suppress speaker dependent components in features used for automatic speech recognition, but later experiments demonstrated the efficiency of their use for speaker recognition tasks. So this paper proposed an algorithm that can easily evaluate the personal emotion from speech signals in real time using personalized emotion patterns that are made by PLP analysis. The experimental results show that the maximum recognition rate for the
speaker dependant system is above 90%, whereas the average recognition rate is 75%. The proposed system has a simple structure and but efficient to be used in real time.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우