특이치 분해와 Fuzzy C-mean(FCM) 군집화를 이용한 벡터양자화에 기반한 워터마킹 방법 (An watermarking method based on singular vector decomposion and vector quantization using fuzzy C-mean clustering)
한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
본 논문은 원본 영상과 은닉 영상의 좋은 압축률과 만족할만한 이미지의 질, 그리고 외부공격에 강인한 영상 은닉의 한 방법을 제안한다. 이 워터마킹 방법은 특이치 분해와 퍼지 군집화 기반 벡터양자화를 이용한다. 실험에서는 은닉된 영상의 비가시성과 외부공격에 대한 강인성을 증명하였다. 이 워터마킹기법의 장점은 워터마크된 영상이 이미 압축되어 있으므로 압축과정과 동시에 저작권 보호에 이용할 수 있다는 장점이 있다.
영어초록
In this paper, we propose the image watermarking method for good compression ratio and satisfactory image quality of the cover image and the embedding image. This method is based on the singular value decomposition and the vector quantization using fuzzy c-mean clustering. Experimental results show that the embedding image has invisibility and robustness to various serious attacks. The advantage of this watermarking method is that we can achieve both the compression and the watermarking method for the copyright protection simultaneously.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우