· 발행기관 : 한국정보과학회
· 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 35권 / 5호 / 313 ~ 324페이지
· 저자명 : 이승수, 염기원, 박지형, 조성배
초록
문장 축소란 원본 문장의 기본적인 의미를 유지하면서 불필요한 단어나 구를 제거하는 일련의 정보 압축 과정을 의미한다. 기존의 문장 축소에 관한 연구들은 학습 과정에서 대량의 어휘나 구문적 자원을 필요로 하였으며, 복잡한 파싱 과정을 통해서 불필요한 문장의 구성원(예를 들어, 단어나 구, 절 등)들을 제거하여 문장을 요약하였다. 그러나 학습 데이타로부터 얻을 수 있는 어휘적 자원은 매우 한정적이며, 문장의 모호성과 예외적인 표현들 때문에 구문 분석 결과가 명료하게 제공되지 않은 언어에서는 문장 요약이 용이하지 않다.이에 본 논문에서는 구문 분석을 대체하기 위한 방법으로 템플릿과 품사 정보를 이용한 문장 축소 방법을 제안한다. 제안하는 방법은 요약문의 구조적 형태를 결정하기 위한 문장 축소 템플릿(Sentence Reduction Templates)과 문법적으로 타당한 문장 구조를 구성하는 품사기반 축소규칙(Grammatical POS-based Reduction Rules)을 이용하여 요약 대상 문장의 구성을 분석하고 요약한다. 더불어, 문장 축소 템플릿 적용 시 발생하는 연산량 증가 문제를 은닉 마르코프 모델(HMM: Hidden Markov Model)의 비터비 알고리즘(Viterbi Algorithm)을 이용하여 효과적으로 처리한다. 마지막으로, 본 논문에서 제안한 문장 축소 방법의 결과와 기존 논문의 연구 결과를 비교 및 평가함으로써 제안하는 문장 축소 방법의 유용성을 확인한다.
영어초록
A sentence reduction is the information compression process which removes extraneous words and phrases and retains basic meaning of the original sentence. Most researches in the sentence reduction have required a large number of lexical and syntactic resources and focused on extracting or removing extraneous constituents such as words, phrases and clauses of the sentence via the complicated parsing process. However, these researches have some problems. First, the lexical resource which can be obtained in learning data is very limited. Second, it is difficult to reduce the sentence to languages that have no method for reliable syntactic parsing because of an ambiguity and exceptional expression of the sentence.In order to solve these problems, we propose the sentence reduction method which uses templates and POS (part of speech) information without a parsing process. In our proposed method, we create a new sentence using both Sentence Reduction Templates that decide the reduction sentence form and Grammatical POS-based Reduction Rules that compose the grammatical sentence structure. In addition, We use Viterbi algorithms at HMM (Hidden Markov Models)
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우