영상간의 유사도는 일반적으로 영상으로부터 추출한 특징벡터간의 벡터공간상의 거리를 계산해서 판단한다. 그러나 이러한 특징벡터가 유사도 계산을 위한 하나의 방법이지만 항상 인간의 유사도 개념을 충실히 반영하지는 않는다. 그러므로 현존하는 대부분의 영상검색시스템들은 각 특징간의 중요도를 선정하여 유사도에 반영하는 방법을 사용하고 있다. 본 논문에서는 영상검색을 위한 새로운 초기 가중치 설정과 갱신 알고리즘을 제안한다. 이를 위해서 먼저 데이타베이스 영상을 인간의 인지도 판단에 의해 그룹화 한 후, 내부질의와 외부질의를 수행하고, 검색된 영상중 유사한 영상이 어느 그룹에 속하는지 알아내어 각 영상별로 유사도 계산에 필요한 최적 특징 가중치를 계산한다. 2000개의 영상데이타에 대한 실험을 통해서 제안된 알고리즘의 우수성을 보인다.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우