PARTNER
검증된 파트너 제휴사 자료

비분류표시 데이타를 이용하는 분류 기반 Co-training 방법

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
8 페이지
기타파일
최초등록일 2025.02.27 최종저작일 2004.08
8P 미리보기
비분류표시 데이타를 이용하는 분류 기반 Co-training 방법
  • 서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 31권 / 8호 / 991 ~ 998페이지
    · 저자명 : 윤혜성, 이상호, 박승수, 용환승, 김주한

    초록

    생물 정보학 등 많은 응용 분야에서 데이타 분석을 할 때는 적은 수의 분류표시된 데이타(labeled data)와 많은 수의 비분류표시된 데이타(unlabeled data)가 있을 수 있다. 분류표시된 자료는 사람의 노력이 요구되기 때문에 얻기가 어렵고 비용이 많이 들지만, 비분류표시된 자료는 별 어려움 없이 쉽게 얻을 수 있다. 이때 비분류표시된 자료를 이용하여 자료를 분류하고 분석하는데 널리 이용되고 있는 방법이 co-training 알고리즘이다. 이 방법은 적은 수의 분류표시된 자료에서 두 가지 뷰(view)로 각 분류자를 학습한다. 그리고 각 분류자는 분석하고자 하는 모든 비분류표시된 자료에서 가장 만족할만한 예측자들을 만들어 나간다. 이렇게 훈련 데이타 셋에서 실험을 여러 번 반복적으로 하게 되면 각 뷰에서 새로운 분류자가 학습되어 분류표시된 자료의 수가 증가한다.본 논문에서는 비분류표시된 데이타를 이용하여 새로운 co-training 방법을 제시한다. 이 방법은 두 가지 분류자와 WebKB 및 BIND XML의 2가지 실험 데이타를 가지고 평가하였다. 실험 결과로서, 이 논문에서 제안한 co-training 방법이 분류표시된 자료의 수가 매우 적을 때 분류정확성을 효과적으로 향상시킬 수 있음을 보였다.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 소프트웨어 및 응용”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 04월 19일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:24 오후