본 논문에서는 그래프 패턴 인식을 신속히 처리하기 위한 새로운 자성 센서의 개발과 인식 시스템을 제안하고자 하였다. 그래픽을 입력받아 세션화와 균형화를 수행하는데 있어서 특징점의 사전 처리를 선결 수행함으로써 인식 속도를 증강하고 선처리된 특징점을 이용하여 끝점, 굴곡점, 분기점의 특징점을 별도로 추출하지 않는 방법으로 조사하여 모음이나 자음의 부분패턴의 그래프 사전을 비교하는 간단한 구조해석과 인식을 도모하였다. 본 논문의 성능 비교를 위하여 사용자의 필기체를 사전에 등록 인식하고 입력 필기체를 비교 인식하여 Unicode로 변환시켜 비교한 결과 70%의 초기 인식률에서 누적 인공학습 지능 처리 결과 95%의 이상의 인식률을 보여주고 있다.
영어초록
This Paper proposed the development of new magnetic sensor and recognition system to expendite pattern recognition of a handwriting character. Received character graphics should be performed the session and balancing and no extraction of end points, bend points and juntions separately. The Artifical intelligence algorithm is adapted to structure snalysis and recognition process by individual basic letter dictionary except for the handwriing character graphic dictionaryimproving error of recognition algorithm and enomous dictionary for generalization. In this Paper, recognition rate of the received character are compared with pre registered character at letter dictionary for performance test of magnetic ball sensor. As a result of unicode conversion and eomparison, the artificial intelligence study have recognition rate more than 95% at initial recognition rate of 70%.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우