본 논문에서는 고속 및 고인식률의 성능을 갖는 영상인식 엔진 구조를 제안한다. 본 엔진은 2단계의 특징점 추출 및 분류 알고리즘을 수행하여 자동차와 보행자를 인식할 수 있다. 엔진의 인식률을 높이기 위해 HOG 특징점 값과 LBP 특징점 값을 같이 사용하여 알고리즘을 구성하였으며, 처리 속도를 높이기 위해 병렬 구조를 개선하여 하드웨어를 설계하였다. 실험결과를 통해 설계한 엔진이 초당 90프레임의 인식 처리가 가능하며 FPPW 10-4 하에서 97.7%의 보행자 인식률을 가짐을 보인다.
영어초록
In this paper, we proposed a advanced hardware engine architecture for high speed and high detection rate image recognitions. We adopted the HOG-LBP feature extraction algorithm and more parallelized architecture in order to achieve higher detection rate and high throughput. As a simulation result, the designed engine which can search about 90 frames per second detects 97.7% of pedestrians when false positive per window is 10-4.
자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다. 자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다. 저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
파일오류
중복자료
저작권 없음
설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우