• 통큰쿠폰이벤트-통합

융합 인공벌군집 데이터 클러스터링 방법

(주)코리아스칼라
최초 등록일
2023.04.05
최종 저작일
2017.12
8페이지/ 어도비 PDF
가격 4,000원 할인쿠폰받기
다운로드
장바구니
  • EasyAI 홍보배너

* 본 문서는 배포용으로 복사 및 편집이 불가합니다.

서지정보

발행기관 : 한국산업경영시스템학회 수록지정보 : 산업경영시스템학회지 / 40권 / 4호
저자명 : 강범수, 김성수

목차

1. 연구의 배경과 목적1
2. 데이터 클러스터링 문제와 해 평가
3. 융합 ABC 데이터 클러스터링 방법
3.1 인공벌군집 방법
3.2 융합 ABC 데이터 클러스터링 방법
4. 실험 및 분석
5. 결 론
Acknowledgements
References

영어 초록

Data clustering is one of the most difficult and challenging problems and can be formally considered as a particular kind of NP-hard grouping problems. The K-means algorithm is one of the most popular and widely used clustering method because it is easy to implement and very efficient. However, it has high possibility to trap in local optimum and high variation of solutions with different initials for the large data set. Therefore, we need study efficient computational intelligence method to find the global optimal solution in data clustering problem within limited computational time. The objective of this paper is to propose a combined artificial bee colony (CABC) with K-means for initialization and finalization to find optimal solution that is effective on data clustering optimization problem. The artificial bee colony (ABC) is an algorithm motivated by the intelligent behavior exhibited by honeybees when searching for food. The performance of ABC is better than or similar to other population-based algorithms with the added advantage of employing fewer control parameters. Our proposed CABC method is able to provide near optimal solution within reasonable time to balance the converged and diversified searches. In this paper, the experiment and analysis of clustering problems demonstrate that CABC is a competitive approach comparing to previous partitioning approaches in satisfactory results with respect to solution quality. We validate the performance of CABC using Iris, Wine, Glass, Vowel, and Cloud UCI machine learning repository datasets comparing to previous studies by experiment and analysis. Our proposed KABCK (K-means+ABC+K-means) is better than ABCK (ABC+K-means), KABC (K-means+ABC), ABC, and K-means in our simulations.

참고 자료

없음

자료문의

제휴사는 별도로 자료문의를 받지 않고 있습니다.

판매자 정보

코리아스칼라는 정직과 신뢰를 기반으로 학술단체 발전에 도움을 드리고자 하는 기업입니다. 본 사는 본 사가 자체 개발한 솔루션을 통하여 보다 효율적인 업무 관리 뿐만 아니라, 학술지의 데이터베이스화, ARCHIVE를 돕습니다. 본 사의 One Stop Service를 통해 국제적인 학술단체로 함께 도약 할 수 있다고 믿습니다.

주의사항

저작권 본 학술논문은 (주)코리아스칼라와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.
환불정책

해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.

파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

이런 노하우도 있어요!더보기

최근 본 자료더보기
유니스터디 이벤트
융합 인공벌군집 데이터 클러스터링 방법
  • 유니스터디 이벤트
AI 챗봇
2024년 11월 25일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:13 오전
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감