PARTNER
검증된 파트너 제휴사 자료

PM2.5농도 산출을 위한 경험적 다중선형 모델 분석

방대한 850만건의 자료 중 주제별로 만들수 있는 최적의 산출물을 해피 캠퍼스에서 체험 하세요 전문가의 지식과 인사이트를 활용하여 쉽고 폭넓게 이해하고 적용할수 있는 기회를 놓치지 마세요
10 페이지
어도비 PDF
최초등록일 2023.04.05 최종저작일 2017.08
10P 미리보기
PM2.5농도 산출을 위한 경험적 다중선형 모델 분석
  • * 본 문서는 배포용으로 복사 및 편집이 불가합니다.

    미리보기

    서지정보

    · 발행기관 : 한국지구과학회
    · 수록지 정보 : 한국지구과학회지 / 38권 / 4호
    · 저자명 : 추교황, 이규태, 정명재

    초록

    본 연구에서는 서울지역의 지상 미세먼지(PM2.5) 농도를 산출하기 위하여 경험적인 모델들을 개발하였다. 연구에 이용한 자료는 2012년 1월 1일부터 2013년 12월 31일까지이며 Terra와 Aqua위성의 MODIS센서에서 산출되는 에어로 졸 광학두께, 옹스트롬 지수, 기상변수들과 행성경계층두께와 관련된 6개의 다중 선형 회귀모델들의 차이를 분석하였다. 그 결과 에어로졸 광학두께와 옹스트롬 지수, 상대습도, 풍속, 풍향, 행성경계층두께, 기온 자료를 입력 자료로 사용한 M6모델이 가장 좋은 결과를 보였다. 통계적인 분석에 따르면 M6 모델을 사용하여 계산된 PM2.5와 관측된 PM2.5농도 사 이의 결과는 상관계수(R=0.62)와 평균제곱근오차(RMSE=10.70 μg m−3)이다. 또한 산출된 계절별 지표면 PM2.5농도는 여름철(R=0.38)과 겨울철(R=0.56)보다 봄(R=0.66)과 가을철(R=0.75)에 상대적으로 더 좋은 상관 관계를 보였다. 이러한 결과는 에어로졸 광학두께의 계절별 관측 특성으로 인한 것으로써 다른 계절에 비하여 여름과 겨울철 에어로졸 광학두께 관측이 구름과 눈/얼음 표면에 의한 관측 제한과 오차를 가져온 것으로 분석되었다. 따라서 본 연구에서 사용한 경 험적 다중선형회귀 모델은 위성에서 산출된 에어로졸 광학두께 자료가 지배적인 변수로 작용하며 PM2.5산출 결과들을 향상시키기 위해서는 추가적인 기상 변수를 이용해야 할 것이다. 또한 경험적 다중선형회귀 모델을 이용하여 PM2.5를 산출한 결과는 인공위성 자료로부터 대기환경 감시를 가능하게 하는 방법이 될 수 있어 유용할 것이다.

    영어초록

    In this study, the empirical models were established to estimate the concentrations of surface-level PM2.5 over Seoul, Korea from 1 January 2012 to 31 December 2013. We used six different multiple linear regression models with aerosol optical thickness (AOT), Ångström exponents (AE) data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites, meteorological data, and planetary boundary layer depth (PBLD) data. The results showed that M6 was the best empirical model and AOT, AE, relative humidity (RH), wind speed, wind direction, PBLD, and air temperature data were used as input data. Statistical analysis showed that the result between the observed PM2.5 and the estimated PM2.5 concentrations using M6 model were correlations (R=0.62) and root square mean error (RMSE=10.70 μg m−3). In addition, our study show that the relation strongly depends on the seasons due to seasonal observation characteristics of AOT, with a relatively better correlation in spring (R=0.66) and autumntime (R=0.75) than summer and wintertime (R was about 0.38 and 0.56). These results were due to cloud contamination of summertime and the influence of snow/ice surface of wintertime, compared with those of other seasons. Therefore, the empirical multiple linear regression model used in this study showed that the AOT data retrieved from the satellite was important a dominant variable and we will need to use additional weather variables to improve the results of PM2.5. Also, the result calculated for PM2.5 using empirical multi linear regression model will be useful as a method to enable monitoring of atmospheric environment from satellite and ground meteorological data.

    참고자료

    · 없음
  • 자료후기

    Ai 리뷰
    지식판매자가 제공하는 자료는 질이 매우 높고, 주제에 대한 깊이 있는 분석이 인상적입니다. 이해하기 쉬운 설명과 다양한 예시 덕분에 활용하기 편했습니다. 정말 감사드립니다!
    왼쪽 화살표
    오른쪽 화살표
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 본 학술논문은 (주)코리아스칼라와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
      본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지구과학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 04월 06일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:01 오후