PARTNER
검증된 파트너 제휴사 자료

히스토리컬 프로파일 구축과 시·공간 자료합성에 의한 단속류 통행시간 예측

방대한 850만건의 자료 중 주제별로 만들수 있는 최적의 산출물을 해피 캠퍼스에서 체험 하세요 전문가의 지식과 인사이트를 활용하여 쉽고 폭넓게 이해하고 적용할수 있는 기회를 놓치지 마세요
12 페이지
어도비 PDF
최초등록일 2015.03.25 최종저작일 2009.04
12P 미리보기
히스토리컬 프로파일 구축과 시·공간 자료합성에 의한 단속류 통행시간 예측
  • * 본 문서는 배포용으로 복사 및 편집이 불가합니다.

    미리보기

    서지정보

    · 발행기관 : 대한교통학회
    · 수록지 정보 : 대한교통학회지 / 27권 / 2호
    · 저자명 : 여태동, 한경수, 배상훈

    목차

    Ⅰ. 서론
    Ⅱ. 자료 전처리
    Ⅲ. 통행시간 예측 모형
    Ⅳ. 예측모형 검증
    Ⅴ. 결론 및 향후 연구과제
    참고문헌

    초록

    현재 국내에서는 지역간 교통의 이동성 및 안전성을 향상시키기 위해 국도를 대상으로 ITS사업을 추진중에 있다.
    이러한 ITS 사업을 통해 교통정보를 이용자에게 실시간으로 제공해 줌으로써 기존의 교통시설의 이용을 극대화 하는데
    목적을 두고 있다. 이러한 정보 제공시 운전자에게 보다 정확한 통행시간정보를 제공해 주는것이 가장 중요하므로 본
    연구에서는 자료의 전처리를 통해 원시데이터의 이상치 제거 및 결측처리를 실시하였다. 이를 통해 통행시간 예측의 기본
    이 되는 원시데이터의 정확성을 향상시켜 정보의 신뢰도를 높일 수 있는 방안을 모색하였다.
    그리고 통행시간 예측을 위해 단속류 도로의 특성을 보다 정확히 반영할 수 있는 히스토리컬 프로파일 모형을 구축하였
    으며 실제 교통류의 특성을 적극적으로 반영하기 위해 보정식을 개발하였다. 따라서 제안된 모형과 히스토리컬 프로파일
    모형과 보정식을 통해 통행시간을 예측한 후 기존의 방식인 신경망 모형, 칼만필터 모형과의 비교검증을 실시하였다.
    결과적으로 일반적인 상황에서는 칼만필터 모형과 비슷한 예측력을 보였으나, 첨두시나 유고상황에서는 개발모형이
    실제 교통흐름을 상대적으로 정확히 반영하여 예측을 수행함을 확인하였다.

    영어초록

    In Korea, the ITS project has been progressed to improve traffic mobility and safety. Further, it is to relieve
    traffic jam by supply real time travel information for drivers and to promote traffic convenience and safety.
    It is important that the traffic information is provided accurately. This study was conducted outlier
    elimination and missing data adjustment to improve accuracy of raw data. A method for raise reliability
    of travel time prediction information was presented. We developed Historical Profile model and adjustment
    formula to reflect quality of interrupted flow. We predicted travel time by developed Historical Profile
    model and adjustment formula and verified by comparison between developed model and existing model
    such as Neural Network model and Kalman Filter model.
    The results of comparative analysis clarified that developed model and Karlman Filter model similarity
    predicted in general situation but developed model was more accurate than other models in incident situation.

    참고자료

    · 없음
  • 자료후기

    Ai 리뷰
    지식판매자가 등록한 자료는 주제에 대한 깊이 있는 분석이 돋보입니다. 과제를 작성하는 데 큰 도움이 되었습니다. 앞으로도 이런 좋은 자료가 많이 등록되기를 기대합니다.
    왼쪽 화살표
    오른쪽 화살표
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 본 학술논문은 (주)학지사와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
      본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한교통학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 04월 02일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:10 오후